Preliminary Results of a Phase 1 Dose-Escalation Study of the First-in-Class IgM-Based Bispecific Antibody IGM-2323 (Anti-CD20 x Anti-CD3) in Patients with Advanced B-Cell Malignancies

Elizabeth Budde, MD PhD¹, Ajay K. Gopal, MD², Ian W. Flinn, MD PhD³, Loretta J. Nastoupil, MD⁴, Michael S. Gordon, MD⁵, Ching-Fai Pang, PhD⁶, Bruce Keyt, PhD⁷, Steve Carroll, PhD⁷, Maya Leabman, PhD⁷, Genevive Hernandez, PhD⁷, Iris Sison⁷, Daniel S. Chen, MD PhD⁷, Wayne R. Godfrey, MD⁷ and Philippe Armand, MD PhD⁸

¹T Cell Therapeutics Research Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA; ²University of Washington/Fred Hutch/Seattle Cancer Care Alliance, Seattle, WA; ³Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX; ⁵Premiere Oncology of Arizona, Scottsdale, AZ; ⁶Phi Consulting Group, Bellevue, WA; ⁷IGM Biosciences, Mountain View, CA; ⁸Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
Disclosures

- Elizabeth Budde reports consultancy for Roche, and Kite; research funding from Amgen, AstraZeneca, Merck, and Mustang Therapeutics; and speaker’s bureau for AstraZeneca.
- Ajay K. Gopal reports research funding from AstraZeneca, BMS, Gilead, IGM Biosciences, IMab Bio, Janssen, Merck, Seattle Genetics, and Takeda; and consultancy for ADC Therapeutics, Actinium, AstraZeneca, Cellectar, Gilead, IMab Bio, Janssen, Merck, Nurix, Seattle Genetics, and TG Therapeutics.
- Ian W. Flinn reports consultancy for AbbVie, AstraZeneca, BeiGene, Gilead Sciences, Great Point Partners, Iksuda Therapeutics, Janssen, Juno Therapeutics, Kite Pharma, MorphoSys, Nurix Therapeutics, Pharmacyclics, Roche, Seattle Genetics, Takeda, Unum Therapeutics, Verastem, Yingli Pharmaceuticals; and research grants (to Sarah Cannon Research Institute) for AbbVie, Acerta Pharma, Agios, ArQule, AstraZeneca, BeiGene, Calithera Biosciences, Celgene, Constellation Pharmaceuticals, Curis, Forma Therapeutics, Forty Seven, Genentech, Gilead Sciences, IGM Biosciences, Incyte, Infinity Pharmaceuticals, Janssen, Juno Therapeutics, Karyopharm Therapeutics, Kite Pharma, Loxo, Merck, MorphoSys, Novartis, Pfizer, Pharmacyclics, Portola Pharmaceuticals, Rhizen Pharmaceuticals, Roche, Seattle Genetics, Takeda, Teva, TG Therapeutics, Trillium Therapeutics, Triphase Research & Development Corp., Unum Therapeutics, Verastem.
- Loretta J. Nastoupil reports honoraria from Bayer, Celgene, Gamida Cell, Genentech, Gilead/KITE, Janssen, Novartis, Pfizer, TG Therapeutics and; and research funding from Celgene, Genentech, Janssen, Karus Therapeutics, LAM Therapeutics, Merck, Novartis, Pfizer, and TG Therapeutics.
- Michael S. Gordon reports no conflicts of interest.
- Philippe Armand reports consultancy for Adaptive, ADC Therapeutics, Affimed, BMS, C4, Celgene, Daiichi Sankyo, Enterome, GenMab, Infinity, Merck, Miltenyi, Morphosys, Pfizer, Regeneron, and Tessa; research funding (institute) from Adaptive, Affimed, BMS, Genentech, IGM Biosciences, Kite, Merck, Otsuka, Roche, Sigma Tau, and Tensha; and honoraria from BMS and Merck.
- Ching-Fai Pang reports consultancy for IGM Biosciences.
- Bruce Keyt, Steve Carroll, Maya Leabman, Genevive Hernandez, Iris Sison, Daniel S. Chen, and Wayne R. Godfrey are employees and shareholders of IGM Biosciences.
IGM-2323 is a novel engineered high-affinity, high-avidity CD20xCD3 IgM bispecific T-cell engager

Bispecific antibodies that bridge lymphoma cells to T cells have shown promise in treating B-cell malignancies1–3

However, existing T-cell engaging antibodies that lead to dense clustering and supraphysiologic T-cell signaling are associated with toxicity (especially CRS) and have a limited therapeutic window that may be related to downregulation of T-cell function.

IGM-2323 is a novel bispecific antibody, based on an engineered pentameric IgM framework, with a recombinant J-chain that is fused to an anti-CD3 scFv.

In preclinical studies, IGM-2323 has been shown to bind irreversibly to CD20-expressing cells, including cancer cells expressing very low levels of CD20, and eliminate them through cell-dependent (TDCC) and cell-independent mechanisms (CDC)4,5

Anti-CD20
10 high affinity, high-specificity binding sites to CD20

Anti-CD3
Single high-specificity binding site to CD3

Complement
IgM mediates >100x greater complement dependent killing of bound cancer cells

CD: cluster of differentiation; CDC: complement dependent cytotoxicity; CRS: cytokine release syndrome; IgG/M: immunoglobulin G/M; scFv: single-chain variable fragment; TDCC: T cell-dependent cytotoxicity

IGM-2323 is designed to enhance immune-modulation

IGM-2323 may provide more physiologic T-cell activation compared with existing bispecific T-cell engaging antibodies:
- T cells respond differently to different levels of TCR signaling
- Activation of T-cell cytotoxic mechanisms and IFNγ secretion require the lowest levels of TCR signal

Importantly, IGM-2323 may limit supraphysiologic stimulation of T cells, leading to:
- More physiologic levels of cytokines secreted, improving safety and tolerability
- More physiologic levels of T-cell stimulation, leading to a IFNγ-dominant cytokine secretion profile
- Ability to preserve or strengthen T-cell responsiveness over time, leading to further enhanced cancer cell elimination over time, and stimulation of endogenous or pre-existing anti-cancer T-cell responses

IFNγ: interferon-gamma

Existing bispecific T-cell engaging antibodies:
- IgG or single chain
- **Supraphysiologic T-cell stimulation**

Novel bispecific T-cell engaging antibodies:
- IgM
- **More-physiologic T-cell stimulation**

Primary objectives: Safety and tolerability; R2PD and schedule, MTD; Secondary objectives: PK, immunogenicity, preliminary efficacy
Patient baseline characteristics, disposition, and preliminary PK (N=16 total enrolled)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Follicular NHL/ Marginal Zone NHL (n=10)</th>
<th>DLBCL/ Mantle Cell (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>66.5 (47–75)</td>
<td>61 (46–82)</td>
</tr>
<tr>
<td>Histology</td>
<td>FL=8 MZL=2</td>
<td>DLBCL=4 MCL=2</td>
</tr>
<tr>
<td>Prior therapies, median (range)</td>
<td>4 (2–6)</td>
<td>4 (2–6)</td>
</tr>
<tr>
<td>Prior ASCT, n (%)</td>
<td>2 (20%)</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>Prior CAR-T, n (%)</td>
<td>1 (10%)</td>
<td>3 (50%)</td>
</tr>
</tbody>
</table>

CD20-positive NHL (N=16)

- Discontinued, n (%): 3 (30%)
 - AE: 0 (0)
 - Physician's decision: 1 (10%)
 - Progressive disease: 2 (20%)

- Ongoing, n (%): 7 (70%)
 Duration: 47, 26, 25, 19, 17, 14, and 14 weeks

Follicular/ Marginal Zone NHL (n=10)

- Discontinued, n (%): 2 (33%)
 - AE: 0 (0)
 - Physician's decision: 1 (17%)
 - Progressive disease: 1 (17%)

- Ongoing, n (%): 4 (67%)
 Duration: 38, 18, 14, and 2 weeks

DLBCL/ Mantle Cell NHL (n=6)

- Discontinued, n (%): 2 (33%)
 - AE: 0 (0)
 - Physician's decision: 1 (17%)
 - Progressive disease: 1 (17%)

- Ongoing, n (%): 4 (67%)
 Duration: 38, 18, 14, and 2 weeks

Preliminary PK

- No drug-induced anti-drug antibodies detected to date
- PK is within expected range based on preclinical data

ASCT: autologous stem cell transplantation; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; MCL: mantle cell lymphoma; MZL: marginal zone lymphoma; LLOQ: lower limit of quantitation; NHL: non-Hodgkin lymphoma

Data cut-off: October 30, 2020
AE summary:
Treatment-emergent AEs occurring in ≥20% of patients

- Generally well tolerated
- No DLTs
- No Grade 3 or higher CRS
- No neurotoxicity

Preferred Term (N=16* patients)

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Any grade n (%)</th>
<th>Grade 1 n (%)</th>
<th>Grade 2 n (%)</th>
<th>Grade ≥3 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>9 (56)</td>
<td>8 (50)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>7 (44)</td>
<td>3 (19)</td>
<td>4 (25)</td>
<td>0</td>
</tr>
<tr>
<td>Chills</td>
<td>6 (38)</td>
<td>4 (25)</td>
<td>2 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>6 (38)</td>
<td>4 (25)</td>
<td>2 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Blood creatinine increased (^a)</td>
<td>5 (31)</td>
<td>4 (25)</td>
<td>1 (6)(^d)</td>
<td>0</td>
</tr>
<tr>
<td>CRS (^b)</td>
<td>4 (25)</td>
<td>3 (19)</td>
<td>1 (6)(^d)</td>
<td>0</td>
</tr>
<tr>
<td>Infusion related reaction (^c)</td>
<td>4 (25)</td>
<td>1 (6)</td>
<td>3 (19)</td>
<td>0</td>
</tr>
<tr>
<td>Anaemia</td>
<td>4 (25)</td>
<td>2 (13)</td>
<td>2 (13)</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) out of 5 patients with creatinine increase were assessed as unrelated to study treatment, per investigator

\(^b\) CRS grading by ASTCT criteria; all CRS patients are also captured under pyrexia and/or chills.

\(^c\) 3 of 4 IRR patients are also captured under CRS

\(^d\) Single patient with pre-existing severe hypertension on four anti-hypertensive medications treated at 100 mg Cycle 1 Day 1 dose experienced Grade 2: CRS, chills, increased creatinine and Grade 1: pyrexia, fatigue, hypophosphatemia after the first infusion. No CRS symptoms were observed at subsequent infusions of study drug up to 100 mg, with or without dexamethasone pre-medication. This patient had cytokine elevation after Cycle 1 Day 1 dose and had a best response of SD (+6%), but is not included in further analyses.

\(^*\) One patient enrolled 2 weeks prior to data cut-off is also included here, but is not included in further analyses.

Example: patient treated with IGM-2323 30 mg dosing

- Generally well tolerated
- No Grade 3 or higher CRS
- No neurotoxicity

- Some patients experience post-infusion chills and/or fever:
 - Transient (≤3 hours), low grade; majority limited to first cycle; acetaminophen is most common treatment;
 - No ICANS symptoms (Immune Cell Associated Neurotoxicity)
 - Associated with CRP elevation at 24 hours
 - Easily prevented with low dose dexamethasone premedication on subsequent infusions if desired

- No CRS observed in the 3 patients treated in 50/100 cohort

Scan this QR code for a copy of this E-Poster

Scan this QR code for a copy of this E-Poster
Best overall response (PET-CT scans):
9 of 14 patients showing evidence of tumor size reduction

- B-cell depletion/reduction observed in 6/6 patients with circulating B cells at baseline

Assigned dose level noted.

PR cut-off, Lugano 2014 criteria, local reads. *100 mg indicates 50/100 mg dose level

PR lymph node size decreased to below normal size with marked decrease in PET activity
CAR-T: chimeric antigen receptor T-cell; FL: follicular lymphoma; IHC: immunohistochemistry; Mantle: mantle cell lymphoma; MZL: marginal zone lymphoma; PET-CT: positron emission tomography-computerized tomography; PR: partial response; SPD: sum of the products of diameters.

Example: 63 year old Post-CAR-T patient with R/R DLBCL treated with IGM-2323 (30 mg)

- Biopsy of new PET-avid lesion at 8 weeks shows intense T-cell infiltration with only scant lymphoma cells, >95% CD3+ T-cell infiltrates by flow cytometry post-treatment
- Lesion completely resolved by PET-CT at 12 weeks

Data cut-off: October 30, 2020. Pathology Images courtesy of MD Anderson Pathology

Immunity, pseudoprogression, and response
DLBCL/mantle cell NHL, change in SPD over time

- Plus new PET-avid lesion
- New lesion resolved

B-cell depletion/reduction observed in 6/6 patients with circulating B cells at baseline

Pre-treatment (CD3 IHC)

Biopsy of new PET-avid lesion

8 weeks post-treatment (CD3 IHC)
IGM-2323 leads to repeatable IFN$_{\gamma}$-dominant immune activity

- Transient, repeatable cytokine elevations, with peak levels 6-12 hours post-infusion
- IFN$_{\gamma}$ detectable above baseline levels in 12/12 patients treated at \geq10mg
- IFN$_{\gamma}$ levels $>>$ IL-6 and TNF$_{\alpha}$ levels in vast majority of patients treated
- For patients dosed with \geq30 mg, 9/9 show repeatable IFN$_{\gamma}$ spikes; 4/9 show higher IFN$_{\gamma}$ spikes at later infusions

IFN$_{\gamma}$ levels pre/post-IGM-2323 treatment

Post-infusion peak cytokine levels

Cytokine levels in frozen plasma were assessed on a batched basis at a central lab. Plots are from n=14 patients and show the highest concentrations obtained during the sampling period: 2, 6, 12, 24, and 72 hours for Infusions 1 and 4, and only 24 hours for Infusions 2, 3, 5, 6. Box plots show 1st and 3rd quartile, blue line connects mean values.

IFN$_{\gamma}$: interferon-gamma; IL-6: interleukin-6; TNF$_{\alpha}$: tumor necrosis factor alpha

Data cut-off: October 30, 2020
Conclusions

Interim Phase I data on the first 16 patients treated (as of October 30, 2020) demonstrates:

- IGM-2323 is generally well tolerated, with no DLTs, no Grade 3 or higher CRS and no evidence of neurotoxicity, despite less steroid pretreatment than for other T-cell engagers
 - Transient fever and CRS in a subset of patients easily suppressed with low dose dexamethasone pre-medication, allowing for control over level of immune-activation and function obtained with each dose
 - IFNγ-dominant cytokine secretion with little to no measurable circulating IL-6 or TNFα in most patients differs from other T-cell engagers
- No drug-induced anti-drug antibodies; preliminary PK consistent with preclinical modeling
- Evidence for anticancer efficacy and responses, despite low to moderate doses tested
- Case of pseudoprogression and subsequent clinical response in a post CAR-T patient with DLBCL is consistent with repeatable and potent IFNγ-dominant immune activation

IGM-2323 Phase I immune activation profile supports a more physiologic immune modulation

- Evidence for preservation of T-cell activation in the majority of patients, which contrasts with step-dosing effect seen with other T-cell engagers that may be associated with global reduction in T-cell function

Phase I dose escalation continues, with expected RP2D between 100–1000mg dose

- Application of titration dosing regimen may allow opportunity to provide NHL patients with optimal and repeatable synthetic and pre-existing immune activity and durable antitumor efficacy
Acknowledgments

• IGM Biosciences and the authors thank the study sites, investigators, and patients who participated in the trial
• IGM Biosciences funded this study and participated in the study design, research, analysis, data collection, interpretation of data, review, and approval of the publication
• All authors had access to relevant data and participated in the drafting, review, and approval of this presentation
• Paul Fredlund provided assistance with drug safety science
• Medical writing assistance was provided by Russell Craddock, PhD, of 2 the Nth (Cheshire, UK) which was funded by IGM Biosciences